
J.  Fluid Mech. (1996), 001. 309, pp. 211-223 
Copyright @ 1996 Cambridge University Press 

21 1 

Shear-induced dispersion in a dilute suspension 
of rough spheres 

By F. R. DA CUNHATAND E. J. H I N C H  
Department of Applied Mathematics and Theoretical Physics, The University of Cambridge, 

Silver Street, Cambridge CB3 9EW, UK 

(Received 7 February 1995 and in revised from 10 October 1995) 

In the absence of Brownian motion, inertia and inter-particle forces, two smooth 
spheres collide in a simple shear flow in a reversible way returning to their initial 
streamlines. Because the minimum separation during the collision can be less than 
of the radius, quite a small surface roughness can have a significant irreversible effect 
on the collision. We calculate the change between the initial and final streamlines 
caused by roughness. Repeated random collisions in a dilute suspension lead to 
a diffusion of the particles across the streamlines. We calculate the shear-induced 
diffusivity for both self-diffusion and down-gradient diffusion. 

1. Introduction 
Shear-induced dispersion is important in mixing particles across streamlines of pipe 

and channel flows. Eckstein, Bailey & Shapiro (1977) noted that mixing is needed in 
blood flow to produce a diffusional flux of platelets to a thrombus on a wall, and 
also to transport oxygen-saturated red cells to unsaturated regions. Mixing can also 
counter systematic migration of particles in rheometry (Leighton & Acrivos 1987b) 
and is useful in the resuspension of a sediment. 

The first experimental investigation of shear-induced migration was made by Eck- 
stein et al. (1977) who monitored the random walk of a radioactively marked particle 
in the gap of a Couette device. For particles of size a in a flow of shear rate y ,  they 
found at moderate concentrations a self-diffusivity of the random walk across the 
streamlines D which was proportional to ?a2, with a numerical coefficient of order 
0.025. At low volume fractions 4 < 0.2, they found that the diffusivity was approx- 
imately linear in the concentration of the suspension. Leighton & Acrivos (1987~)  
used the time to circulate the Couette device to obtain more precisely the position 
across the flow, finding D = 0.542ya2 for 0.05 < 4 < 0.4. 

Numerical simulations have been made by Bossis & Brady (1987) for spheres in a 
monolayer using their Stokesian dynamics. They found that when Brownian motion 
is small the cross-stream diffusivity scales with ya2, with a numerical coefficient of 
0.074 at an areal fraction of 4A = 0.453. 

Because two smooth spheres return to their original streamlines after a collision, 
theoretical studies are complicated even in dilute suspensions by the necessity of 
considering more than two particles. Recently Wang, Mauri & Acrivos (1995) have 
examined three spheres interacting in a certain approximation, finding a cross-stream 
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diffusivity of 0.1 142ya2. Earlier Acrivos et al. (1992) had calculated the dispersion 
along, rather than across, the streamlines, which involved a far-field interaction 
between four spheres as two pairs. 

When two spheres collide in a shear flow, the minimum separation can be less than 
of their radius. A small surface roughness can therefore have a large effect. Now 

Smart & Leighton (1989) observed that a sample of 43 pm glass spheres had surface 
asperities of the order of 0.4 pm, and that these stopped the spheres becoming closer 
than the asperities. Arp & Mason (1977) showed that a small surface roughness 
could eliminate the closed doublets in which two close spheres circle one another 
indefinitely in shear flow. In this paper we explore the effect of surface roughness on 
the collisions between two spheres. We will suppose that the asperities exert a normal 
force between the surfaces of two spheres which resists their becoming closer than 
the asperities but which does not exert any resistance as they separate. (We will also 
need to make assumptions about the tangential component of the contact force.) The 
difference between approach and separation makes the collision irreversible, so that 
the particles separate on streamlines further apart than on their approach. There is 
thus a migration of particles across streamlines, and this leads to a shear-induced 
dispersion. A similar random migration of a rough heavy sphere sedimenting through 
a suspension of neutrally buoyant sphere has been studied by Davis (1992). 

2. Particle trajectories 
2.1. Governing equations 

We consider a dilute suspension of small rigid non-colloidal spheres of radius a, 
which are immersed in a viscous fluid undergoing a simple shear flow 

IJ = (YY,O,O)  * 

We suppose that the spheres are sufficiently small for inertial forces to be negligible 
in the particles and in the fluid. On the other hand we suppose that the spheres 
are sufficiently large for Brownian and other physico-chemical interactions to be 
negligible. Finally we assume that the particles are neutrally buoyant. Under these 
conditions, the hydrodynamic forces and couples on the particles must vanish, with 
the viscous flow being obtained from solving the Stokes equations. 

In a dilute suspension we need only consider in detail the interaction between two 
spheres. Let the centres of the two spheres be X ( t )  and Y(t ) .  Now the centre of mass 
of two equal spheres translates with the simple shear, i.e. 

and 

X & )  + Y&) = y (&O0 + Y?) 9 

X2(t)  + Y2(t) = X,-" + YTo07 
X3(t) + Y3(t) = XTrn + q-"? 

where the superscript denotes the value far upstream at t = -a. The relative motion 
x( t )  = X ( t )  - Y ( t )  is described by Batchelor & Green (1972a). Non-dimensionalizing 
lengths with the radius of the spheres a and times with the inverse shear rate l / y ,  
they give 

2 = y + e x - i B y ,  
y = e y - - B x ,  1 

z =  ez 7 
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where 

and 
Here A(r)  and B(r) are mobility functions for the motion parallel and perpendicular 
to the line of centres. 

e = xy(B  - A ) / r 2  r2 = x2 + y 2  + z2  . 

2.2. Mobility functions 
Expressions for the mobility functions A(r)  and B(r) can be found in Tables 11.23-27 
of the book by Kim & Karrila (1991). In the far field r 2 2.5, we use the forms 

A = 5r-3 - 8r-' + 25r-6 - 35r-' + 1 2 5 ~ '  - 102r-" + 1 2 5 - "  + 430r-I2 , 
B = (16r-' + - 36r-l' - 25r-l' - 36r-12) . 

In the lubrication region 2 < r < 2.01, we use 

A = (16.3096 - 7.1548r) /r , 
B = 2 (0.4056L2 + 1.49681L - 1.9108) /r (L2 + 6.04250L + 6.32549) , 

where L = -ln(r -.2). In the intermediate region 2.01 < r < 2.5, we use a least- 
squared-fit of a fifth-order polynomial in r-l to the data of Lin, Lee & Sather 
(1970) 

A = -4.3833 + 17.7176r-' + 14.8204r-2 - 92.4471~--~ - 46.3151r-4 + 232.2304rW5 , 
B = -3.1918 + 12.3641r-1 + 11.461W2 - 65.2926r-3 - 3 6 . 4 9 0 9 ~ ~  + 154.8074rV5 . 

This fit is within 3% of the data in the range 2.01 < r < 2.5. 

2.3. Model of roughness 
The electron micrographs of Smart & Leighton (1989) showed spheres covered with 
isolated asperities of the size of of a particle radius. Apparently the pro- 
cess of manufacture generates small debris which becomes attached to the otherwise 
smooth spheres. The density of these asperities was sufficiently large to prevent the 
smooth parts of the surfaces coming into contact: always a smooth surface would 
contact an asperity. On the other hand the density of the asperities was sufficiently 
sparse not to interfere with the lubrication between the two surfaces. Other types of 
particles may be different. 

Let the non-dimensional minimum separation between the surfaces of the two 
spheres be 6. In reality this will vary between different spheres and even between 
different contacts of the same spheres. We shall assume, however, that all contacts 
have the same minimum separation r = 2 + E between the centres of the spheres. 

As described in the introduction, we model the effect of the roughness by assuming 
that, when the particles are at their minimum separation, a normal force is exerted to 
stop the particles becoming closer, but no force is exerted when the particles separate. 
This is certainly an approximation, because some work would be needed to separate 
any asperities which had become welded to the other sphere. Further we ignore the 
effects of the roughness up to the point of contact. Now the flow tries to bring the 
particles together in the compressive quadrants of the shear xy < 0 and tries to 
separate them in the extensional quadrants xy  > 0. Thus our model of the effect of 
the roughness is to replace the mobility function for motion along the line of centres 
with 

A = 1 when both xy  < O  and r = 2 + € .  
Otherwise we use the mobility functions given in the previous section. 

to 
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The above model of roughness changes neither the tangential motion nor the 

rotational motion. For two close spheres, the resulting relative motion of the surfaces 
is small, and so possibly unimportant. Now it is possible to adopt an alternative 
simple model of the roughness. One can argue that the asperities fuse the particles 
and so the two spheres become locked and rotate as a single rigid body. Alternatively 
one can argue that the asperities act as gear teeth and the two particles roll around 
one another without slipping. By the antisymmetry of the flow, this no-slipping 
assumption also leads to the two spheres rotating together as a single solid body (in 
the case of spheres of equal size). To prevent the slipping, a tangential force and a 
torque are exchanged in addition to a normal force, and this modifies the mobility 
function B(r) .  Now Wakiya (1971) and Nir & Acrivos (1973) have studied the rotation 
in a shear flow of two touching spheres which are locked together. Their analysis gave 
B = 0.405, which is the value obtained from our lubrication formula in the touching 
limit. For this alternative model of the effect of roughness, we set 

A = 1 and B =0.4046 when both xy < 0 and r = 2 + ~ .  

These two models of the effect of the roughness represent two simple extremes. In 
a study of a heavy rough sphere sedimenting past a neutrally buoyant sphere, Davis 
(1992) found that the motion could be described by a solid friction model which 
lies between the two extremes which we have adopted. Smart, Beimfohr & Leighton 
(1993) found similarly for a rough particle slipping down an inclined smooth wall. 

For near equatorial collisions, z small, the exact modelling of the effect of the 
roughness on the rotation is irrelevant. To calculate the final streamline, we need only 
the separation and orientation at the start of the extensional quadrant, i.e. r = 2 + F 
and z when x = 0. Alternative models of the roughness may make the individual 
particles rotate differently while they are in contact in the compressional quadrant, 
but they do not change the separation r = 2 + F and do not change much the 
orientation of the pair if z NN 0 at the start of the extensional quadrant x = 0. Off the 
equatorial plane there may be some small differences between the orientation z when 
x = 0, but these differences must vanish both when z = 0 and when y = 0. 

2.4. Numerical results 
The governing equations for the trajectories of the pair of particles were integrated 
numerically using a fourth-order Runge-Kutta scheme. The time-step can be larger in 
the far field r > 2.5, where we took 6 t  = 0.01. In the intermediate region 2.01 < r < 2.5 
we reduced the time-step to St = 0.005. In the lubrication region 2 < r < 2.01, the 
time-step was reduced further to 6t  = 0.001 to ensure that the radial separation 
changed little in one step. The errors in the numerical integration were then less 
than One test of the integration scheme is that it was able to reproduce the 
periodic closed doublet starting from x = -3, y = 0.1 and z = 0.1 without noticeable 
change of the amplitude over more than 5 cycles. Of course for the migration across 
streamlines, we are only interested in the open trajectories in which the particles start 
and terminate infinitely far apart. 

Figure 1 shows some typical trajectories of one sphere relative to the other in the 
(x, y)-  and (x, z)-planes. With no surface roughness E. = 0, the trajectory is symmetric; 
the spheres return to their initial streamlines after the collision. For the trajectory 
starting at x = -10 and y = z = 0.1, the minimum separation of the smooth spheres 
is 4.75 x Figure 1 shows that the collisions become asymmetrical once the surface 
roughness c is greater than this minimum separation: the spheres now separate on 
streamlines further apart than on their approach. Because the trajectories crowd 
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FIGURE 1. The effect of roughness on particle trajectories, (a)  in the (x,y)-plane and (b)  in the 
(x,z)-plane. The initial conditions are x = -10 and y = z = 0.1. The different curves correspond to 

, = s x 10-4; different values of the roughness: ~ , E =o; - ---- , r =  10-4; _ _ _ _ _  
, f = 10-2. ----_---_- , = 10-3; _._._._. , E = 5 x 10-3 and -.-.-.-. 
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considerably during the collision, quite a small displacement by the roughness across 
the crowded trajectories produces a large displacement across the final streamlines. 

It is useful to estimate the scaling of this crowding of the trajectories. Batchelor & 
Green (1972b) showed that in a general linear shearing flow the probability density 
function is only a function of the scalar distance between the two non-Brownian 
spheres, so long as the particles start at a great separation with a uniform probability 
density function. They derive the probability density function 

Using our mobility functions A and B,  which are based on more accurate calculations 
than those available to Batchelor & Green, we find that in the lubrication region 

nk5-0.7813 ( L  + 1.347)-0.3506 P "  9 

where 5 = r - 2 and L = ln(l/<). Now when the spheres are aligned perpen- 
dicular to the flow, they move around one another with an O(y) velocity. Hence 
in this orientation the flux of trajectories with 2 < r < 2 + e and IzI < 1 is 
nyk'e0.2187 (In(l/e) + 1.347) , assuming that e is much larger than the minimum 
separation of the open trajectories. Now when the spheres are greatly separated, 
they move apart with velocity y y .  Hence in the far field the flux of trajectories with 
0 < y < 6 and Jz( < 1 is Equating these two fluxes, we find that trajectories 

with separation 6(e) = 0 ( F ~ . ~ ~ ~ ~  (ln(l/e) + 1.347) ) crowd together to an e 
separation as the spheres pass. 

-0.3506 

-0.1753 

2.5. Displacements across streamlines 
To calculate the shear-induced dispersion, we are interested in the net displacement 
across streamlines caused by a collision. Numerical computations follow the trajectory 
x ( t )  starting the spheres at a great separation on approaching streamlines, x --+ --GO 

with y-" > 0, and integrating until the spheres are again at large separations, now 
on the receding streamline x + 00. Using the centre of mass motion given earlier, we 
find that the net streamline displacement of the first sphere is 

AX2 = XlW - X F ~  = (y+"o - --oO y 1 ,  
and similarly 

1 -  AX3 = $ (zfm - z-O0 

To avoid computations to very large separations, which take a long time on the 
slow trajectories with y small, we use two extrapolations from a more moderate value 
of the separation, x = +lo. In the case of fast trajectories, when x >> 1 and y and 
z are 0(1), the first approximation to the trajectory is a straight line x - xo + yot, 
y - yo and z - 20. At the next approximation 

Integrating we find 

yr2 i r 2  
3xx 3xx 

y m  - y + -  and zoo - z + - .  

In the case of slow trajectories, when x >> 1, y << 1 and z = 0(1), the governing 
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FIGURE 2. Distributions of final streamlines (X~oo,X:co)  for the first sphere which started with 
(X;m,X;m) on a regular grid on [0,2] x [0,2]. The second sphere starts at the origin, Y-"O = 0. 
The different panels correspond to different values of the roughness: (a)  E = 3 x (b)  E = 
( c )  E. = 10-3, ( d )  = 10-2. 

equations reduce to 

x - y ,  y - - 7 x x  8 ( 2 ++5/' and i - 0  

Integrating we find 

ym - (y' - $(x2 + . z ~ ) ~ / ~ ) ' / '  and zm - z . 
These two extrapolations agree when y - ym << y << 1. For x = +lo, a convenient 
cross-over is at y = 0.1. Applying the extrapolation, the eventual streamline position 
is found with an error of less than 

To represent the net streamline displacements, we plot in figure 2 the final coordi- 
nates (X,+O0,X,'") of the first sphere which started on a regular grid in 0 6 X F ~  6 2, 
0 < X F ~  < 2; the second sphere starts at the origin, Y-"O = 0. The pictures would 
be reproduced in X,'m < 0 symmetrically about the axis X3fm = 0. Note that for the 
convenience of the later calculation of the diffusivities we use coordinates in which 
the second sphere starts at the origin rather than the more usual coordinates in which 
the centre of mass of the two spheres is fixed at the origin. 

smaller than the minimum separation of 
the open trajectories of smooth spheres, all the trajectories return to their original 
streamlines, i.e. the original regular grid in figure 2(a), and there is no net displace- 
ment. With increasing roughness there are progressively larger displacements of the 
streamlines. We note that the displacements are mainly in the Xz-direction, the direc- 

For a surface roughness e = 3 x 
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tion of the velocity gradient, although there is some displacement in the X3-direction, 
the direction of the vorticity. 

In figure 2 we see that the surface roughness produces an excluded region with no 
final trajectories and a region where the trajectories are compressed outwards. This 
structure has a simple form for planar collisions, with z = 0. Consider the trajectory 
which has a separation equal to the surface roughness r = 2 + E when the particles 
are perpendicular to the flow, x = 0. Let 6 be the value of the final height y" for this 
trajectory. By symmetry all trajectories with initial heights 0 < y-m < 6 must have 
their spheres coming into contact through surface roughness in the compressional 
quadrant x < 0. These spheres then move around one another at the separation r = 
2 + E until perpendicular to the flow, when they separate on the single half-trajectory 
with y+" = 6. For these trajectories the streamline displacement is AX2 = i(6 -XFm) 
for 0 < X F ~  < 6, i.e. in figure 2 there is an excluded region 0 < X2f" < $5 and a 
linearly compressed region $3 < Xz" < 6. Figure 2 shows that there is a very similar 
behaviour for non-planar collisions, z # 0, slightly distorted by the displacements in 
the vorticity z-direction. 

3. Dispersion coefficients 
3.1. Self-diflusion 

In self-diffusion, a single marked particle executes a random walk in a suspension 
at a uniform concentration. The self-diffusivity is half the rate of change in time of 
the variance of the displacement of the random walk. In this paper the random walk 
is across the streamlines and is due to collisions with other particles in the shear 
flow. We will calculate the diffusivities for displacements in the y-direction and in the 
z-direction. 

We consider a dilute suspension with a uniform concentration. Let n be the number 
density of the particles in the suspension and so the volume fraction is 4 = n:xa3 << 1. 
We assume that there are no long-range correlations in the suspension, so that the 
probability distribution of particles which collide with a test sphere is uniform in space 
when they are far upstream. Hence the rate of collisions with relative displacements 
in (y-",y-" + dy-") x (Z-~ ,Z-"  + az-"), which have spheres approaching at a 
velocity y(y-"I, is nyJy-"16y-"06z-". A collision with these parameters produces a 
net displacement of the test sphere (-AX2, -AX3) with AXi(y-", z - ~ ,  6). Since we are 
assuming that each of these collisions is uncorrelated, we have self-diffusivities 

Df = /" /m(AXi)2nyly-"l dy-"dz-" (i = 2 or 3). 

Non-dimensionalizing the lengths in the integral with the radius of the sphere a, we 
have 

-" -" 

(i = 2 or 3). 

The above integral was evaluated numerically over the grid of y-"z-m-points shown 
in figure 2 using a trapezoidal rule. The spacing of 0.05 between points produced 
an error less than 0.1%. By symmetry we integrated over the positive quadrant and 
quadrupled the answer. Further there is no need to extend the range of integration 
outside the square of length 2 for the values of surface roughness considered, because 
the integrand vanished identically well inside this square. 

Figure 3 gives the results for the self-diffusivities for roughness from loF3 to 8 x lop2. 
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FIGURE 3. The self-diffusivities divided by 6a2y as a function of the surface roughness: (a) for 
diffusion in the direction of the gradient of velocity, and ( b )  for diffusion in the direction of the 
vorticity. Results for the model of surface roughness with only a normal force are given by the 
points 0, and for the alternative model with the two spheres locked together by the points A. In 
the insert the diffusivity has been plotted against the scaling S4(e) = c0.4374 (In(l/e) + 1.347)-0'7012 
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From the vertical scales of the figure, we note that the diffusion is very anisotropic, 
with the diffusivity in the direction of the vorticity being less than 10% of that in the 
direction of the velocity gradient, much less than 10% at small surface roughnesses. 
Guided by the earlier discussion of the large 6(e) displacements in the final streamline 
caused by a small surface roughness E ,  we found that the diffusivity D; in the gradient 
direction is approximately linear in S4(e) = E ~ . ~ ~ ~ ~  (ln(l/e) + 1.347)- over the 
range < E < see insert to figure 3. The magnification of the insert also 
shows that there is a minimum roughness, equivalent to the minimum separation of 
the open trajectories, below which the diffusivity vanishes. The diffusivity D; in the 
vorticity direction seems to be approximately linear in E in the range plotted. 

The two different models of the effect of surface roughness produce very similar 
results. The first model with just a normal force in the compressional quadrant 
produces a slightly smaller diffusivity in the direction of the velocity gradient. The 
second model with the two spheres rotating as a single fused body has a lower 
diffusivity in the direction of the vorticity, roughly half the value from the first model. 

Now in recent experiments Biemfohr et al. (1993) found self-diffusivities of 2.3 x 
10-2&z2y in the dilute limit. We note that for the surface roughness of E = 0.02 our 
0; is 8 x 10-3$a2y, i.e. a non-negligible contribution while not fully explaining the 
observations. Biemfohr et al. suggest that the non-sphericity of their particles with an 
aspect ratio of about 1.19 made an important contribution to the dispersion. Indeed 
if we view this non-sphericity as a gross roughness of E = 0.09, then we do predict 
the measured self-diffusivity. Future studies should investigate the interaction between 
two smooth spheroidal particles. 

0.7012 

3.2. Down-gradient difusion 
We now consider a suspension which has a small gradient in the concentration in a 
direction across the streamlines, separately in the direction of the velocity gradient 
and in the direction of the vorticity, i.e. 

an 
n ( x )  = no + xi- 

8x1 
(i  = 2 or 3). 

We need to calculate the rate at which particles cross unit area of a plane perpendicular 
to the concentration gradient, xi = 0 for i = 2 or 3, due to displacements across the 
streamlines. 

Consider a test sphere starting at X-m being displaced AX = X+"O -Xdm across the 
streamlines as a result of a collision with a second sphere starting at Y-"O. With the 
relative separation (x, y ,  z )  of the two spheres, x = X - Y ,  the rate of these collisions 
is n(Y-")y]y-"J. For a given initial separation of the colliding pair x - ~ ,  and hence 
given final displacement across the streamlines AX, any test sphere starting with Xim 
in the range -AXi < Xlrm < 0 will cross the plane perpendicular to the concentration 
gradient, xi = 0, from the negative side. There is a smilar range on the positive side 
when AXi < 0. Hence the net flux of particles across the plane is 

n(XLTm)n( Y,-"O)yly-" I dXl-" dy-wdz-m ( i  = 2 or 3) 

taking into account both cases AXi > and < 0. We substitute Yi-m = Xim -xi" and 
substitute the linear variation of the concentration neglecting terms quadratic in the 

Lsp, [LXt 1 
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FIGURE 4. Down-gradient diffusivities. See caption to figure 3 for details. 

gradient. Then integrating, we find a flux equal to 

The first term in the square bracket vanishes, as averaging over the collisions there 
is no net displacement. Hence the flux is proportional to the concentration gradient, 
with the coefficient of proportionality being a diffusivity. Non-dimensionalizing the 
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(i = 2 or 3). 

One of the two 0; is the standard contribution of the random walk to a flux down 
a concentration gradient. The other Of, together with the final integral, is due to 
the slightly higher concentration of particles colliding on one side of a test sphere 
systematically nudging it across the streamlines towards the lower concentration. 

This integral was evaluated as for the self-diffusivities. Figure 4 gives the results 
for surface roughnesses from to 8 x We first note that the diffusivities 
for self-diffusion differ from those for down-gradient diffusion, because interactions 
between the particles are essential for both dispersions. In the dilute limit of = 0, 
the diffusivities are equal, with common value 0. We find that the down-gradient 
diffusivities are larger than the self-diffusivities by a factor of 6 for the direction 
of the velocity gradient and by a factor of 12 for the direction of the vorticity. 
As a consequence, the diffusivities are less anisotropic for down-gradient diffusion 
compared with self-diffusion. The results for the two models of the effect of surface 
roughness are again similar. We have no experimental results with which to compare 
our predictions. 
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